Social Icons

Hyperbaric Facility Upgrading Benefits Both Administrators And Patients

By Janine Hughes


Some types of injuries or disease make it necessary to breathe a pure form of oxygen that is under additional atmospheric pressure. The process first came into use to help prevent deep-sea divers from experiencing painful decompression sickness due to rapid ascent, and today is in widespread use as a proven way to encourage more rapid healing of injuries and diseases. Hyperbaric facility upgrading provides advantages both for staff and patients.

During compression, people remain inside a uniquely designed chamber. Untreated air contains around 21% oxygen, and while beneficial, breathing pure oxygen has limited results in most cases. The best outcomes are generated by creating a pure form of this gas that is additionally under greater atmospheric pressure. It can statistically increase the volume of oxygen present in the blood.

For many patients, the outcome is faster and more extensive blood vessel formation, more consistent control of infection, reduced toxicity of some poisons, faster healing of resistant open wounds, and reduced tissue deterioration. Increasing the amount of oxygen delivered throughout the body decreases the probability of obstructions caused by gas bubbles, and encourages thorough healing. Treatments may be as few as two, or may take place daily.

Common injuries and illnesses that show improvement under this regimen not only encompass decompression-related problems, but today include controlling infections in diabetic wounds, encouraging more rapid recovery of crushing injuries, fighting threatening cases of gangrene, and combating the effects of radiation used to treat cancer victims. People recovering from serious burns accept grafts more readily, and carbon monoxide poisoning cases detoxify rapidly.

Facilities exist today primarily in hospitals, and consist of chambers that hold only one individual to those designed to accommodate up to twelve or more. A monoplace chamber has room for a single patient, may be tube shaped, and usually constructed of plastic. Patients recline inside, and a session may last up to two hours or more. The most common side effect is ear-popping due to pressure changes.

The amount of pressure and the time it takes for treatment are dependent on a specific diagnosis, and patient history regarding oxygen response. Some individuals benefit most from a daily regimen, while others require far fewer. In general, this procedure is safe and reliable. Patients with upper respiratory infections or other counter-indications may experience treatment delays.

Operational reviews and inspections normally take place regularly. They are often completed by medical consultants. Standard operations are analyzed, and associated staff members are asked about operational or procedural issues that have occurred. Logs detailing maintenance and daily use help define which type of improvements may be needed, or whether outdated equipment should be replaced.

Both patients and hospital staff benefit from an upgrade to state-of-the art facilities. Not only do improvements increase the quality of care, but are very important to administrators responsible for cost controls. Consultants present solid statistics that detail projected financial savings as well as the amount of necessary investment in new equipment. The process is ongoing, and does not significantly interrupt treatment schedules.




About the Author:



Aucun commentaire:

Enregistrer un commentaire